Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 78(11): 4929-4938, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36054536

RESUMO

BACKGROUND: Invasive species threaten the productivity and stability of natural and managed ecosystems. Predicting the spread of invaders, which can aid in early mitigation efforts, is a major challenge, especially in the face of climate change. While ecological niche models are effective tools to assess habitat suitability for invaders, such models have rarely been created for invasive pest species with rapidly expanding ranges. Here, we leveraged a national monitoring effort from 543 sites over 3 years to assess factors mediating the occurrence and abundance of brown marmorated stink bug (BMSB, Halyomorpha halys), an invasive insect pest that has readily established throughout much of the United States. RESULTS: We used maximum entropy models to estimate the suitable habitat of BMSB under several climate scenarios, and generalized boosted models to assess environmental factors that regulated BMSB abundance. Our models captured BMSB distribution and abundance with high accuracy, and predicted a 70% increase in suitable habitat under future climate scenarios. However, environmental factors that mediated the geographical distribution of BMSB were different from those driving abundance. While BMSB occurrence was most affected by winter precipitation and proximity to populated areas, BMSB abundance was influenced most strongly by evapotranspiration and solar photoperiod. CONCLUSION: Our results suggest that linking models of establishment (occurrence) and population dynamics (abundance) offers a more effective way to forecast the spread and impact of BMSB and other invasive species than simply occurrence-based models, allowing for targeted mitigation efforts. Implications of distribution shifts under climate change are discussed. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Ecossistema , Heterópteros , Animais , Mudança Climática , Espécies Introduzidas , Dinâmica Populacional , Estados Unidos
2.
Ecology ; 101(1): e02906, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31560801

RESUMO

Climate change has caused widespread shifts in species' phenology, but the consequences for population and community dynamics remain unclear because of uncertainty regarding the species-specific drivers of phenology and abundance, and the implications for synchrony among interacting species. Here, we develop a statistical model to quantify inter-annual variation in phenology and abundance over an environmental gradient, and use it to identify potential drivers of phenology and abundance in co-occurring species. We fit the model to counts of 10 butterfly species with single annual generations over a mountain elevation gradient, as an exemplar system in which temporally limited availability of biotic resources and favorable abiotic conditions impose narrow windows of seasonal activity. We estimate parameters describing changes in abundance, and the peak time and duration of the flight period, over ten years (2004-2013) and across twenty sample locations (930-2,050 m) in central Spain. We also use the model outputs to investigate relationships of phenology and abundance with temperature and rainfall. Annual shifts in phenology were remarkably consistent among species, typically showing earlier flight periods during years with warm conditions in March or May-June. In contrast, inter-annual variation in relative abundance was more variable among species, and generally less well associated with climatic conditions. Nevertheless, warmer temperatures in June were associated with increased relative population growth in three species, and five species had increased relative population growth in years with earlier flight periods. These results suggest that broadly coherent interspecific changes to phenology could help to maintain temporal synchrony in community dynamics under climate change, but that the relative composition of communities may vary due to interspecific inconsistency in population dynamic responses to climate change. However, it may still be possible to predict abundance change for species based on a robust understanding of relationships between their population dynamics and phenology, and the environmental drivers of both.


Assuntos
Borboletas , Animais , Mudança Climática , Dinâmica Populacional , Estações do Ano , Espanha , Temperatura
3.
Glob Chang Biol ; 20(11): 3351-64, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24863299

RESUMO

Predicting biodiversity responses to climate change remains a difficult challenge, especially in climatically complex regions where precipitation is a limiting factor. Though statistical climatic envelope models are frequently used to project future scenarios for species distributions under climate change, these models are rarely tested using empirical data. We used long-term data on bird distributions and abundance covering five states in the western US and in the Canadian province of British Columbia to test the capacity of statistical models to predict temporal changes in bird populations over a 32-year period. Using boosted regression trees, we built presence-absence and abundance models that related the presence and abundance of 132 bird species to spatial variation in climatic conditions. Presence/absence models built using 1970-1974 data forecast the distributions of the majority of species in the later time period, 1998-2002 (mean AUC = 0.79 ± 0.01). Hindcast models performed equivalently (mean AUC = 0.82 ± 0.01). Correlations between observed and predicted abundances were also statistically significant for most species (forecast mean Spearman's ρ = 0.34 ± 0.02, hindcast = 0.39 ± 0.02). The most stringent test is to test predicted changes in geographic patterns through time. Observed changes in abundance patterns were significantly positively correlated with those predicted for 59% of species (mean Spearman's ρ = 0.28 ± 0.02, across all species). Three precipitation variables (for the wettest month, breeding season, and driest month) and minimum temperature of the coldest month were the most important predictors of bird distributions and abundances in this region, and hence of abundance changes through time. Our results suggest that models describing associations between climatic variables and abundance patterns can predict changes through time for some species, and that changes in precipitation and winter temperature appear to have already driven shifts in the geographic patterns of abundance of bird populations in western North America.


Assuntos
Distribuição Animal , Aves/fisiologia , Animais , Colúmbia Britânica , Noroeste dos Estados Unidos , Dinâmica Populacional , Chuva , Estações do Ano , Neve , Sudoeste dos Estados Unidos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...